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A higher-order boundary layer analysis for lipid
vesicles with two fluid domains
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We obtain approximate solutions to the equations that govern the shape of
giant unilamellar vesicles (GUVs) with two fluid phases. The equations involve a
dimensionless small parameter related to the resistance to changes in its local mean
curvature. Asymptotic solutions for the shape are obtained up to and including
terms of first order in the small parameter. At this order, we determine a relationship
between the tangent angle at the interface and the difference in the Gaussian
curvature stiffnesses of the co-existing phases. This relationship demonstrates that a
difference in the Gaussian curvature stiffnesses moves the phase boundary away from
the neck, as determined in previous numerical studies. The analytical expression for
the tangent angle obtained here can be used to determine elastic parameters for the
membranes from experimental data. Use of the analytical expression will eliminate
the need for the repeated generation of numerical solutions in the estimation
of the material parameters. Our analytical solution also reduces the number of
measurements needed as inputs for an existing boundary layer analysis.

1. Introduction
The biological membranes of animal cells are complicated bilayer structures

composed of different types of phospholipid molecules, cholesterol, and proteins
(Israelachvili 1992; Lipowsky & Sackmann 1995; Alberts et al. 2002; Leibler 2004).
Because of their complicated structure, a systematic study of mechanical or thermal
behaviour of a biological membrane is difficult. However, lipid bilayer vesicles are
simpler, can be made in laboratories without much difficulty, and are easier to study.
They consist of many of the same phospholipids that, in association with cholesterol,
form cell membranes. They are fluid-like, spontaneously form in aqueous solution,
resist bending, and have a large variety of shapes. Their sizes vary from about
20 nanometres to a few hundred micrometres in diameter, with thickness only a few
nanometres. The giant unilamellar vesicles (GUVs) have sizes in the micrometre range
and can be visualized using optical microscopes. Because of their large diameter-to-
thickness ratio, they are modelled as surfaces in a three-dimensional space that are
characterized locally by their mean and Gaussian curvatures (Helfrich 1973; Jenkins
1977; Evans & Yeung 1994; Seifert 1997; Leibler 2004).

When a GUV consists of two coexisting fluid domains (Baumgart, Hess & Webb
2003; Baumgart et al. 2005), it is deformed by the line tension associated with the
energy of the thickness difference between coexisting domains (Akimov et al. 2004)
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and the compositional inhomogeneity (Widom 1999) across the phase boundary. The
deformation induced by the line tension is balanced by the bending resistance of
the vesicle and the osmotic pressure difference across the membrane. However, for
a stretched GUV, the resistance to bending is important only in a small region that
contains the phase boundary (Allain & BenAmar 2006).

In this work, we carry out a boundary layer analysis to an order higher than in an
existing analysis (Allain & BenAmar 2006). The existing analysis, to lowest order in
the perturbation parameter, has been employed to predict the onset of budding and
to estimate the contribution of the bending resistance to the effective line tension at
the phase interface (Allain & BenAmar 2006). The lowest-order analysis of Allain &
BenAmar (2006) consists of the complete outer layer solution, the inner layer solution
for the tangent angle, and matching of inner and outer layers for the tangent angle.
They do not obtain a complete inner layer solution and its matching with the outer
layer. Here, we carry out the full solution, extend the analysis to higher order, include
matching of the inner and outer solutions, and construct the composite solution. The
full outer and inner layer solutions and their matching, at the lowest order, permits
the shape to be described with fewer input parameters.

The extension to higher order incorporates the resistance of the vesicle to changes
in Gaussian curvature, which cannot be captured by the lowest-order analysis. This
resistance plays an important role in determining the geometry of a phase-separated
vesicle near its neck. Using a numerical solution of the shape equations, its influence
has been studied when a vesicle is close to budding (Jülicher & Lipowsky 1996;
Lipowsky et al. 2005). It was observed that differing Gaussian curvature stiffnesses
between the phases shift the phase boundary away from narrowest part of the neck.
The relative magnitude of the Gaussian curvature stiffnesses determines whether the
difference favours or hinders bud formation (Jülicher & Lipowsky 1996). For vesicles
far away from budding, Baumgart et al. (2005) used numerical solutions to examine
similar displacements of the phase boundary. The analytical solution that we obtain
here exhibits such effects when the shapes are not close to budding. For budded
shapes, a rescaling of the neck radius is necessary and this results in equations that
are analytically intractable.

In addition to solving the differential equations for the shape separately in the
regions near and away from the interface, we solve the jump conditions and equations
obtained from asymptotic matching analytically at each order of the boundary layer
analysis. The latter solution provides expressions for the geometric quantities that
describe the overall shape of the vesicle, the line tension, and the tangent angle at
the interface in terms of the mechanical properties, the amount of the coexisting
phases, and the boundary radius of the interface. Moreover, the composite solution
for tangent angle near the interface can be used to determine the relative magnitude
of the Gaussian curvature stiffnesses, together with the line tension at the interface,
using experimental vesicle data.

2. Equations and jump conditions
Figure 1 shows a schematic of the closed axisymmetric vesicle that we consider

in the present work. The membrane consists of two phases, labelled (−) and (+).
In reference to experimental vesicle shapes (Baumgart et al. 2005), the two phases
correspond to liquid ordered (Lo) and liquid disordered (Ld) domains, respectively,
and are assumed to be separated by a sharp interface. Although this is an idealization,
GUVs prepared from ternary lipid mixtures of a low-melting-temperature lipid
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Figure 1. Parametrization of the two-phase membrane for an axisymmetric deformation. The
initial configuration is taken to be a sphere of radius ρ. The (−) and (+) regions correspond
to liquid ordered (Lo) and liquid disordered (Ld ) domains, respectively (Baumgart et al. 2005).

such as dioleoylphosphatidylcholine (DOPC), high-melting-temperature lipids such as
dipalmitoylphosphatidylcholine (DPPC) or egg sphingomyelin (ESM), and cholesterol
exhibit a situation similar to that considered here (Almeida, Fedorov & Prieto 2003;
Veatch & Keller 2003, 2005). This occurs at room temperature, which is far from the
critical point, and when compositions of the mixtures lie in the Lo − Ld coexistence
region of a ternary phase diagram. We also assume that the area occupied by each
phase in a vesicle is not coupled to shape changes (Jülicher & Lipowsky 1996) and
the temperature is constant. Then the chemical potential of the lipid components is
constant and not coupled to shape changes. The bending stiffness of the membranes
is typically of the order of 10−19 N m (Evans 1980; Duwe, Käs & Sackmann 1990;
Israelachvili 1992; Leibler 2004) and the area compression modulus of the membranes
is of the order 10−1 N m−1 (Israelachvili 1992; Waugh & Evans 1979). The large
difference in the order of magnitudes of these two moduli makes it significantly harder
to induce changes in the area of membranes of GUVs than to bend them and the
membranes are assumed to be laterally incompressible.

For a laterally incompressible fluid bilayer, with inner and outer monolayers
indistinguishable and the long axis of the lipid molecules oriented along the direction
normal to the membrane surface, the bending free energy per unit area has the form
w = w(h2, k), where h and k are the mean and Gaussian curvatures of the membrane.
The simplest form of w is

w = κh2 + κgk, (2.1)

where κ and κg are the bending stiffnesses corresponding to the mean and Gaussian
curvatures, respectively (Helfrich 1973; Jenkins 1976; Seifert 1997). The total
bending energy is obtained by integrating w over the entire membrane area. For
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a homogeneous vesicle with spherical topology, the integral of Gaussian curvature is
constant (OŃeil 1966) and the Gaussian curvature stiffness κg does not play a role.
However, for a phase-separated membrane, κg does influence the shape through the
jump conditions that relate the bulk equilibrium equations at the interface between
the phases (Jülicher & Lipowsky 1996).

The equilibrium shape equations and jump conditions are obtained by minimizing
the energy functional with contributions from the total bending energy, the line energy
at the interface, and the pressure difference between the inside and outside of the
vesicle (Jenkins 1977; Jülicher & Lipowsky 1996). Alternatively, they can be obtained
through the balance of forces and moments on an infinitesimal area element of the
membrane (Evans & Yeung 1994; Calladine & Greenwood 2002; Powers, Huber
& Goldstein 2002). In the (−) region, the equations that govern the dimensionless
transverse shear stress Qs and mean curvature h (equations 18, 19 of Baumgart et al.
(2005)) are

(Qs)
′ +

r ′Qs

r
− 2h

[
−d + εh2 + ε

sinψ

r

(
2h +

sinψ

r

)]
= −p (2.2)

and

h′ = −Qs/ε. (2.3)

In the above, lengths are made dimensionless by the radius ρ of a reference sphere and
forces are made dimensionless by the ratio of the mean curvature bending stiffness
κ+ in the (+) region to ρ. The parameter ε ≡ κ−/κ+ is the ratio between mean
curvature bending stiffnesses of the (−) region κ− and the (+) region κ+. Changes in
the tangent angle ψ and the distance of a point on the membrane from the axis of
symmetry r (see figure 1) are governed by

ψ ′ = −2h − sinψ

r
, r ′ = cosψ. (2.4)

Lateral incompressibility of the membrane is imposed by assuming that during
deformation the vesicles preserve their local surface area. This gives

� ′ ≡ (cos S)′ = −r, (2.5)

where S is the arclength of the reference sphere made dimensionless by its radius
ρ. The prime denotes derivative with respect to deformed arclength s; and p and d

are, respectively, the dimensionless inner excess pressure and the dimensionless mean
lateral tension. The Lagrange multiplier γ (s) associated with the conservation of local
area is given by (Jenkins 1976)

γ (s) r + εh2 = −d.

The mean lateral tension d is a constant that may be different in each phase. It
corresponds to the Lagrange multiplier when a global area constraint is imposed
(Helfrich 1973; Jülicher & Lipowsky 1996).

The introduction of the reference arclength, through (2.5), permits specification of
the area fraction of each phase. This, in turn, allows the determination of the position
of the interface and the radii of the outer spheres in terms of the area fraction.

For large pressures, µ2 ≡ 1/p is a small parameter (Allain & BenAmar 2006). We
also define another dimensionless quantity τ ≡ 2d/p. Then the nonlinear differential
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equation for h,

µ2h′′ +
µ2r ′h′

r
− h

[
τ

ε
− 2µ2

(
h2 + 2h

sinψ

r
+

sin2 ψ

r2

)]
=

1

ε
, (2.6)

is obtained by combining (2.2) and (2.3) and employing the dimensionless variables.
The remaining differential equations from (2.4) and (2.5) are

ψ ′ = −2h − sin ψ

r
, r ′ = cos ψ, � ′ ≡ (cos S)′ = −r. (2.7)

The equations in the (+) region are identical, except that the parameter ε is unity.
The quantities ψ , r , and � are continuous at the interface, s = s∗, where s∗ must

be determined:

ψ− = ψ+ = ψ∗, r− = r+ = r∗, � − = �+ = � ∗,

with ψ∗, r∗, and � ∗ = cos S∗ being the values of ψ , r , and � at the interface. The
jump conditions for the transverse force, the tangential force, and the moment at the
interface are (Jülicher & Lipowsky 1996; Baumgart et al. 2005)

Q+
s − Q−

s − σ̂
sinψ∗

r∗ = 0, (2.8)

d+ − d− − [(h+)2 − ε (h−)2] − 	
sin2 ψ∗

r∗2
− σ̂

cos ψ∗

r∗ = 0, (2.9)

h+ − εh− − 	
sin ψ∗

r∗ = 0, (2.10)

where σ̂ is the dimensionless line tension and 	 ≡ (κ+
g − κ−

g )/k+ is a measure of
the difference in the Gaussian curvature stiffnesses κ−

g and κ+
g in the two regions.

Equations (2.8) and (2.9) can be rewritten in terms of the small parameter µ as

µ2[(h+)′ − ε (h−)′] + σ
sinψ∗

r∗ = 0, (2.11)

1

2
(τ+ − τ−) − µ2

[
(h+)2 − ε (h−)2 + 	

sin2 ψ∗

r∗2

]
− σ

cosψ∗

r∗ = 0, (2.12)

where σ = σ̂ /p is the dimensionless line tension normalized by p and (2.10) remains
unchanged. In contrast to Jülicher & Lipowsky (1996) and Allain & BenAmar (2006),
we phrase the problem in terms of both h and ψ rather than ψ alone. This is because
the jump conditions at the phase boundary are naturally expressed in terms of the
two variables. Using the first of (2.7), the shape equations and boundary conditions
can also be written in terms of the tangent angle ψ and its derivatives alone (Jülicher
& Lipowsky 1996; Allain & BenAmar 2006).

The boundary conditions at the north pole, s = 0, are

(h−)′ = 0, ψ− = 0, r− = 0, � − = 1. (2.13)

The boundary conditions at the south pole, s = ŝ, where ŝ must be determined, are

(h+)′ = 0, ψ+ = π, �+ = −1. (2.14)

The condition r(ŝ) = 0 is automatically satisfied by a solution of the shape equations
subjected to the jump conditions and the boundary conditions at the poles (Jenkins
1976; Das 2007).
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The experimentally measured quantities are the ratio χ+ of the area of the (+)
domain to the total membrane area and the boundary radius r∗. Also,

χ+ = 1
2
(1 + � ∗) which gives � ∗ = 2 χ+ − 1. (2.15)

The other parameters that appear in the approximate analytical solution are s∗, ŝ, τ−,
τ+, and σ . They are determined from our analysis. Note that in a phase-separated
vesicle, its lipid composition determines the line tension σ , which, in turn, determines
the boundary radius. However, in experimental vesicle images, it is not possible to
measure the line tension, but it is possible to measure r∗. Consequently, in our analysis,
r∗ is treated as a known parameter and σ is solved for. This allows estimation of
the line tension from equilibrium shape analysis. A similar approach has also been
discussed in Baumgart et al. (2005).

3. Boundary layer
The mean curvature bending stiffness κ is small compared to p̄ρ3, where p̄ is

the pressure in physical units. For example, the vesicle analysed by Baumgart et al.
(2005) gives p̄ ≈ 10−2 N m−12 and ρ ≈ 9.8 µm, resulting in p̄ρ3 ≈ 10−17 N m and,
as mentioned earlier, κ is of the order 10−19 N m (Duwe et al. 1990). As a result,
the factor µ appearing in (2.6) is very small (Allain & BenAmar 2006). For zero
bending resistance, the shape of the vesicle under the action of a line tension at the
interface resembles two truncated spheres with a kink at their circle of intersection.
Small non-zero bending stiffness eliminates the discontinuity in tangent angle at the
interface, but does not change the global shape much. The kink at the interface is
then replaced by a narrow region in which there is a rapid change in the tangent
angle, resulting in large longitudinal curvature. This region of rapid change is the
boundary layer (Hinch 1991; Bender & Orszag 1999; Powers et al. 2002; Allain &
BenAmar 2006). Here, we describe a boundary layer calculation that includes terms
of order µ. The lowest-order and order-µ analyses are also referred as order one and
first order, respectively. The lowest-order solution for the tangent angle was obtained
by Allain & BenAmar (2006). We provide complete lowest-order solutions for the
outer and inner layers in Appendices A and B, respectively.

3.1. Outer layer

We first describe the analysis for the (−) region. The outer layer is the region away
from the interface, where the membrane has constant curvature. In this region, a
regular perturbation expansion of the variables in the small parameter µ (Hinch
1991) is

h = h0+µh1, ψ = ψ0+µψ1, r = r0+µr1, � = �0+µ�1, τ = τ0+µτ1. (3.1)

Using the expansions given in (3.1), at the order µ,

h1 =
τ1

τ 2
0

, ψ ′
1 = −2τ1

τ 2
0

− ψ1

τ0

cot
s

τ0

+
r1

τ 2
0 sin (s/τ0)

, (3.2)

r ′
1 = − sin

s

τ0

ψ1, � ′
1 = −r1. (3.3)

The solution of the system of equations (3.2) and (3.3) with boundary conditions
ψ1(0) = 0, r1(0) = 0, and �1(0) = 0 is

ψ1 = − τ1

τ 2
0

s, r1 = τ1 sin
s

τ0

− τ1s

τ0

cos
s

τ0

,
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�1 = 2τ1 τ0

(
cos

s

τ0

− 1

)
+ τ1 s sin

s

τ0

.

Using expressions from Appendix A, the outer solution, including terms of order
µ, is given by

h = − 1

τ0

+ µ
τ1

τ 2
0

, ψ =
s

τ0

− µ
τ1

τ 2
0

s, r = τ0 sin
s

τ0

+ µ

(
τ1 sin

s

τ0

− τ1s

τ0

cos
s

τ0

)
,

� = τ 2
0

(
cos

s

τ0

− 1

)
+ 1 + µ

[
2τ1 τ0

(
cos

s

τ0

− 1

)
+ τ1 s sin

s

τ0

]
.

Note that the outer layer up to order µ is a spherical cap of radius τ0 − µ (τ 2
0 /τ1).

3.2. Inner layer

The inner layer is the narrow region around the interface. As mentioned before,
curvature changes rapidly in this region. A typical value of the line tension is
σ̄ ≈ 10−12 N, so the dimensionless line tension σ ≡ σ̄ /(p̄ρ2) is of order one. The
lowest-order outer layer solution for h indicates that the ratio of mean lateral tension
and pressure τ is also of order one. Moreover, we focus on vesicles for which the
radius r near the interface is of order one. With these, the dominant terms in (2.6) and
jump condition (2.11) arise from the contributions of the mean lateral tension (hτ/ε)
and the line tension (σ sinψ∗/r∗), respectively. These are balanced by the bending
terms of the corresponding equations when s and h are scaled as

ξ =
s − s∗

µ
, h =

H

µ
,

where s∗ is the arclength at the phase boundary. Then ξ and H are the stretched
arclength and the scaled mean curvature, respectively. These are equivalent to the
scalings used in the earlier boundary layer analyses (Powers et al. 2002; Allain &
BenAmar 2006).

During budding and fission, the neck becomes extremely thin, so r is of order µ

rather than order one. Consequently, our analysis does not apply in this case. Allain
& BenAmar (2006) predicted the onset of budding by comparing energies of vesicles
with different boundary radius and the same normalized line tension σ . However,
they do not describe budded shapes that require the rescaling of r in the neck region.
Upon considering r to be of order µ we find that, unlike (B 1), the lowest-order
equations obtained from (3.4) and (3.5) are nonlinear and coupled, and finding an
analytical solution is not feasible. This was also observed by Powers et al. (2002) in
the context of tether formation.

In the (−) region, s � s∗, resulting in ξ � 0. In terms of the stretched variable, the
shape equations are

Ḧ − τ

ε
H + 2H 3 + µ2H

sinψ

r

(
2H + µ

sin ψ

r

)
+ µ

cos ψ

r
Ḣ =

µ

ε
. (3.4)

ψ̇ = −2H − µ
sin ψ

r
, ṙ = µ cos ψ, �̇ = −µr, (3.5)

where the overdot denotes a derivative with respect to ξ .
We now assume the perturbation expansion

H = H0 + µH1 + µ2H2, ψ = ψ0 + µψ1, r = r0 + µr1,
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� = �0 + µ�1, τ0 = τ0 + µτ1 + µ2τ2.

The solution at the lowest order is given in Appendix B. At order µ, the equations
are

Ḧ1 −
(

τ0

ε
− 6H 2

0

)
H1 =

1

ε
+

τ1

ε
H0 − 4H 2

0

sinψ0

r∗ − Ḣ0

cosψ0

r∗ ,

ψ̇1 = −2H1 − sinψ0

r∗ , ṙ1 = cosψ0, �̇1 = −r∗.

The solution at this order is given by

H1 =

[
A +

2N

r∗ arctan(sinh ζ ) +
4M

r∗ ln(sech ζ )

]
sech ζ tanh ζ − M

r∗ exp ζ

+
1

τ0

(2sech2ζ − 1) +

(
3M

r∗ +
τ1

2
√

τ0 ε

)
sech ζ (1 − ζ tanh ζ ),

ψ1 =

√
ε

τ0

[{
2A − 4M

r∗ +
4N

r∗ arctan(sinh ζ ) +
8M

r∗ ln(sech ζ ) −
(

6M

r∗ +
τ1√
τ0

)
ζ

}
× sech ζ +

2M

r∗ exp ζ −
(

N

r∗ − 2

τ0

)
ζ −

(
4

τ0

+
2N

r∗

)
tanh ζ − B

]
,

r1 =

√
ε

τ0

[2N(sech ζ − sechΓ ) − 4M(tanh ζ − tanh Γ ) + 2M(ζ − Γ )] ,

�1 = −
√

ε

τ0

r∗ (ζ − Γ ),

where ζ ≡ √
τ0 ξ + Γ , M = −{cos[ψ∗

0 + 2 arctan(sinh Γ )]}/2, and N = − sin[ψ∗
0 +

2 arctan(sinh Γ )]. Here, Γ and A are the constants of integration from the lowest-
and first-order equations for H , respectively. They are determined using matching
and jump conditions. The constant B is related to the value of the tangent angle ψ∗

at the interface.
To obtain the order-µ term in h in the inner layer, it is necessary to consider the

equation for H at order µ2:

Ḧ2 −
(τ0

ε
− 6H 2

0

)
H2 =

τ1

ε
H1 +

τ2

ε
H0 + F (ξ ), (3.6)

where F (ξ ) is implicitly given by

F (ξ ) = −2

ε

(
3H0H

2
1 − 4H0H1

sinψ0

r∗ + H0

sin2 ψ0

(r∗)2

)
−

√
τ0

ε
H1

cosψ0

ε r∗

−
(

4H 2
0

cos ψ0

r∗ −
√

τ0

ε

sinψ0

r∗ Ḣ0

)
ψ1

ε
+

(
4H 2

0 sinψ0 +
τ0Ḣ0√

ε
cosψ0

)
r1

ε(r∗)2
.

The solution to (3.6) is given by

H2 = C sech ζ tanh ζ +
τ1

τ 2
0

(
1 − 4

3
sech2ζ

)
+ g(ξ ),

where C is an undetermined constant and g(ξ ) is a complicated function that decays to
zero as ξ goes to −∞. The solutions of the H1 and H2 equations have one undetermined
constant each, instead of two that are expected. When we impose boundedness of h as
ξ goes to −∞, and equate the coefficient of the exponentially growing terms collected
together appearing in the solution to zero, one of the constants is determined. The
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constants C and τ2 cannot be determined from the order-µ analysis. They can be
determined from the solutions at order µ2, which we do not attempt here. This leads
to a small error in order-µ terms of h, as both sech ζ tanh ζ and g(ξ ) decay rapidly
with ξ , and leaves the other variables unaffected. Note that H2 goes to τ1/τ

2
0 , its outer

solution at order µ, as ξ goes to −∞.

3.3. Outer and inner layer for the (+) region

Following the same procedure, we obtain the outer layer for (2.6) and (2.7),
corresponding to the (+) region, including terms of order µ, as

h = − 1

τ0

+ µ
τ1

τ 2
0

, ψ = π − y

τ0

+ µ
τ1

τ 2
0

y, r = τ0 sin
y

τ0

+ µ

{
τ1 sin

y

τ0

− τ1

τ0

y cos
y

τ0

}
,

� = τ 2
0

(
1 − cos

y

τ0

)
− 1 + µ

[
2τ0τ1

(
1 − cos

y

τ0

)
− τ1 y sin

y

τ0

]
,

and where y ≡ ŝ − s, in which ŝ ≡ ŝ0 + µ ŝ1 is the deformed arclength at the south
pole.

The inner layer solution, up to order µ, is

h =

√
τ0

µ
sech η +

[
D +

2T

r∗ arctan(sinh η) +
4P

r∗ ln(sech η)

]
sech η tanh η

+
P

r∗ exp(−η) +
1

τ0

(2 sech2η − 1) +

(
τ1

2
√

τ0

− 3P

r∗

)
sech η(1 − η tanh η)

+ µ

[
G sech η tanh η +

τ1

τ 2
0

(
1 − 4

3
sech2η

)
+ f (ξ )

]
,

ψ = ψ∗
0 − 2[arctan(sinh η) − arctan(sinh Υ )] +

µ
√

τ0

[{
2D +

4T

r∗ arctan(sinh η)

+
8P

r∗ ln(sech η) − 4P

r∗ +

(
6P

r∗ − τ1√
τ0

)
η

}
sech η +

2P

r∗ exp(−η)

−
(

T

r∗ − 2

τ0

)
η −

(
4

τ0

+
2T

r∗

)
tanh η − E

]
,

r = r∗ +
µ

√
τ0

[2T (sech η − sechΥ ) − 4P (tanh η − tanhΥ ) + 2P (η − Υ )] ,

� = � ∗ − µ r∗
√

τ0

(η − Υ ),

where η =
√

τ0ξ + Υ , P = −{cos[ψ∗
0 + 2 arctan(sinhΥ )]}/2, and T = − sin[ψ∗

0 +
2 arctan(sinhΥ )], and f (ξ ) decays to zero as ξ goes to ∞. The constants Υ and D

are the constants of integration from the lowest- and first-order equations for H ,
respectively. They are solved using matching and jump conditions. The constant E is
related to the value of the tangent angle ψ∗ at the interface. The constant G, similar
to the constant C, can be determined from the solutions at order µ2.

Note that τ0, τ1 should be read as τ−
0 , τ−

1 , respectively for (−) region and τ+
0 , τ+

1 ,
respectively for (+) region and the same for h, ψ , r , and � .

4. Jump conditions and asymptotic matching for the boundary layer
We have, so far, determined solutions for the inner and outer layers that are valid

separately in the boundary layer and away from the boundary layer, respectively.
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They involve constants and parameters that are yet to be determined. We solve for
these using the equations obtained from asymptotic matching of the outer and the
inner layers, and the jump conditions at the interface. In doing so, we also obtain
a composite solution that is uniformly valid over the entire region. For asymptotic
matching, we make the inner and outer solutions agree in an intermediate region
(Hinch 1991; Bender & Orszag 1999). To obtain expressions for the inner layer in an
intermediate region, we let ξ go to −∞ in the (−) region and to ∞ in the (+) region.
We then retain terms of order one, order µ, and order µξ . After the substitutions
s = s∗ + µξ and s∗ = s∗

0 + µs∗
1 the outer layer solutions are expanded in powers of µ.

Corresponding order-one, order-µ, and order-µξ terms resulting from the inner and
outer solutions are equated after taking the limits. The matching of h is identically
satisfied, because of the restriction of no oscillation and the boundedness imposed on
H0, H1, and H2. At the interface the boundary radius r∗ is specified, the parameters
ψ∗ and σ are expanded as

ψ∗ = ψ∗
0 + µψ∗

1 , σ = σ0 + µ σ1,

and the jump conditions are satisfied at the order one and order µ. It would be truer
to the physics to treat the line tension σ as a known quantity and the boundary
radius r∗ as an unknown to be determined. In that case, the boundary radius should
be expanded as r∗ = r∗

0 + µr∗
1 and σ should be regarded as an input.

4.1. Jump conditions and asymptotic matching for the boundary layer
at the lowest order

The solution of the matching and jump conditions at the lowest order indicates that
only the tangent angle at the interface is influenced by the bending stiffness. All
other quantities are determined by the zero-bending solution discussed in Allain &
BenAmar (2006). However, in Allain & BenAmar (2006) the inner and outer layer
solutions of the full system of equations and their matching was not attempted.
Consequently, the geometric quantities such as radii of the outer spheres, and the
tangent angles at the intersection of the two spheres are specified as inputs in their
analysis. Here, we solve the matching and jump conditions analytically. Then, in
addition to the osmotic pressure, also employed as input by Allain & BenAmar
(2006), only the area fraction of the disordered phase χ+ and the boundary radius r∗

need to be specified. These two quantities can be obtained from vesicle shape tracing
(Baumgart et al. 2005; Das 2007).

Boundary layer matching of ψ , r , and � , in the (−) and (+) region at the lowest
order gives

r∗ = τ−
0 sin

s∗
0

τ−
0

, (τ−
0 )2

(
cos

s∗
0

τ−
0

− 1

)
+ 2 = 2χ+, (4.1)

r∗ = τ+
0 sin

ŝ0 − s∗
0

τ+
0

, (τ+
0 )2

(
1 − cos

ŝ0 − s∗
0

τ+
0

)
= 2χ+, (4.2)

arctan(sinh Γ ) = −π

2
− ψ∗

0

2
+

s∗
0

2 τ−
0

, arctan(sinh Υ ) = π − ψ∗
0

2
− ŝ0 − s∗

0

2 τ+
0

. (4.3)

The jump conditions, at this order, given by (2.10) to (2.12), become

H+
0 − εH −

0 = 0,√
τ+
0

dH+
0

dη
−

√
ε τ−

0

dH −
0

dζ
+ σ0

sinψ∗
0

r∗ = 0,
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1
2
(τ+

0 − τ−
0 ) − [(H+

0 )2 − ε(H −
0 )2] − σ0

cosψ∗
0

r∗ = 0.

The explicit forms of the above jump conditions in terms of the unknown parameters
are √

τ+
0 sechΥ −

√
ε τ−

0 sechΓ = 0, (4.4)

τ+
0 sechΥ tanh Υ − τ−

0 sechΓ tanhΓ − σ0

sinψ∗
0

r∗ = 0, (4.5)

1
2
(τ+

0 − τ−
0 ) − (τ+

0 sech2Υ − τ−
0 sech2Γ ) − σ0

cos ψ∗
0

r∗ = 0. (4.6)

The solution of (4.1) and (4.2) is

τ−
0 =

2(1 − χ+)√
4(1 − χ+) − (r∗)2

, τ+
0 =

2χ+√
4χ+ − (r∗)2

, (4.7)

s∗
0 = τ−

0 arcsin

(
r∗

√
4(1 − χ+) − (r∗)2

2(1 − χ+)

)
, ŝ0 = s∗

0 + τ+
0 arcsin

(√
4χ+ − (r∗)2

2χ+

)
.

(4.8)
From the lowest-order outer solution,

σ0 =
r∗

2

(
2χ+ − (r∗)2√
4χ+ − (r∗)2

+
2(1 − χ+) − (r∗)2√
4(1 − χ+) − (r∗)2

)
. (4.9)

Equations (4.3) and (4.4) give(
ετ−

0 cos
s∗
0

τ−
0

+ τ+
0 cos

ŝ0 − s∗
0

τ+
0

)
cos ψ∗

0 + r∗(ε − 1) sinψ∗
0 = ετ−

0 − τ+
0 . (4.10)

This equation can be solved in closed form. A unique solution is obtained when we
impose the condition that 0 � ψ∗

0 � π. Finally, it can be verified that (4.5) and (4.6)
are automatically satisfied, using σ0 given by (4.9).

When ε = 1 and χ+ = 1/2, the solution to (4.10) is ψ∗
0 = π/2 and the interface is

at the neck. When this symmetry is broken by taking ε different from unity and/or
χ+ different from 1/2, this is not the case. We will see in the next section that
a difference in Gaussian curvature stiffnesses 	 also influences the position of the
interface relative to the neck.

4.2. Jump conditions and asymptotic matching for the boundary layer at order µ

In this section, we obtain and solve the matching and jump conditions at order µ.
The jump in bending moment at this order involves the measure 	 of the difference
in Gaussian curvature resistances. The value of the tangent angle at the interface and,
consequently, the location of the interface with respect to the neck are influenced by
	 (Jülicher & Lipowsky 1996; Baumgart et al. 2005). This is not captured by the
lowest-order solution of Allain & BenAmar (2006).

Asymptotic matching of r and � for the two regions gives

τ−
1

[
2 τ−

0

(
cos

s∗
0

τ−
0

− 1

)
+

s∗
0

τ−
0

r∗
]

− r∗s∗
1 = 0, (4.11)

τ−
1

(
r∗

τ−
0

− s∗
0

τ−
0

cos
s∗
0

τ−
0

)
+ cos

s∗
0

τ−
0

s∗
1 = Λ1, (4.12)
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τ+
1

[
2τ+

0

(
cos

ŝ0 − s∗
0

τ+
0

− 1

)
+

ŝ0 − s∗
0

τ+
0

r∗
]

− r∗(̂s1 − s∗
1 ) = 0, (4.13)

τ+
1

(
r∗

τ+
0

− ŝ0 − s∗
0

τ+
0

cos
ŝ0 − s∗

0

τ+
0

)
+ cos

ŝ0 − s∗
0

τ+
0

(̂s1 − s∗
1 ) = Λ2. (4.14)

The expressions for Λ1 and Λ2 are provided in Appendix C. Solving (4.11) to (4.14),

τ−
1 = (r∗Λ1)/

[
τ−
0

(
1 − cos

s∗
0

τ−
0

)2
]

, τ+
1 = (r∗Λ2)/

[
τ+
0

(
1 − cos

ŝ0 − s∗
0

τ+
0

)2
]

,

(4.15)

s∗
1 = Λ1

[
2 τ−

0

(
cos

s∗
0

τ−
0

− 1

)
+

s∗
0

τ−
0

r∗
]/ [

τ−
0

(
1 − cos

s∗
0

τ−
0

)2
]

, (4.16)

ŝ1 = s∗
1 + Λ2

[
2τ+

0

(
cos

ŝ0 − s∗
0

τ+
0

− 1

)
+

ŝ0 − s∗
0

τ+
0

r∗
] /[

τ+
0

(
1 − cos

ŝ0 − s∗
0

τ+
0

)2
]

.

(4.17)
Asymptotic matching of ψ1 for the two regions gives

ψ∗
1 −

(
2

√
ε

τ−
0

sechΓ

)
A = Λ3, ψ∗

1 −
(

2

√
1

τ+
0

sechΥ

)
D = Λ4. (4.18)

By satisfying the jump conditions at order µ,

H+
1 − εH −

1 − 	
sin ψ∗

0

r∗ = 0, (4.19)

τ+
1

2
− τ−

1

2
− 2(H+

0 H+
1 − εH −

0 H −
1 ) + σ0

sinψ∗
0

r∗ ψ∗
1 − σ1

cosψ∗
0

r∗ = 0, (4.20)√
τ+
0

dH+
1

dη
−

√
ε τ−

0

dH −
1

dζ
+ σ0

(
cos ψ∗

0

r∗ ψ∗
1

)
+ σ1

sinψ∗
0

r∗ = 0. (4.21)

Rewriting (4.19) and (4.20),

(sechΥ tanh Υ ) D − (ε sechΓ tanh Γ ) A = Λ5, (4.22)

(

√
τ+
0 sech2Υ tanh Υ )D − (

√
ετ−

0 sech2Γ tanh Γ ) A − σ0

sinψ∗
0

2 r∗ ψ∗
1 +

cosψ∗
0

2 r∗ σ1 =
Λ6

2
.

(4.23)

The expressions for Λ3 to Λ6 are provided in Appendix C. Only Λ5 contains the
measure of Gaussian curvature stiffness 	.

Upon solving (4.18) and (4.22) for ψ∗
1 , A, and D and simplifying the resulting

expressions we obtain

ψ∗
1 = Ω11Λ3 + Ω12Λ4 + Ω13Λ5, (4.24)

A = Ω21 (Λ4 − Λ3) + Ω22Λ5, D = Ω31 (Λ4 − Λ3) + Ω32Λ5. (4.25)

Subsequently, we solve for σ1 using (4.23) when ψ∗
0 is not equal to π/2 and obtain

σ1 = − r∗

cos ψ∗
0

(Ω41Λ3 + Ω42Λ4 − Λ6). (4.26)
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When ψ∗
0 is equal to π/2, σ1 can be solved using (4.21). The coefficients Ωij are given

in Appendix D.
The solution at order µ, given by (4.15) to (4.17) and (4.24) to (4.26), is one of

the main contributions of our paper. Note, from (4.24) and (4.25), that 	 influences
the values of ψ∗

1 , A, and D. Moreover, (4.26) shows that Λ5 does not appear in the
solution for σ1. This implies that the line tension is not influenced by the Gaussian
curvature stiffness. Finally, we provide the composite solutions that are uniformly
valid for the entire vesicle in Appendix E.

5. Discussion
5.1. A simple situation

Here we consider the situation when both the phases have same mean curvature
bending stiffness and area fraction. In this case ε = 1 and χ+ = 1/2. The boundary
radius r∗, although an order-one quantity, is always smaller than unity. Consequently,
we express the results for this simple situation in powers of r∗. We keep terms up to
and including (r∗)4. Quantities at the lowest order from (4.7) to (4.10) are

τ−
0 = τ+

0 =
1√

2 − (r∗)2
≈ 1√

2

[
1 +

1

4
(r∗)2 +

3

32
(r∗)4

]
,

s∗
0 =

ŝ1

2
≈ π√

2
− r∗ +

π

4
√

2
(r∗)2 − 1

3
(r∗)3 +

3π

32
√

2
(r∗)4,

σ0 =
r∗ − (r∗)3√

2 − (r∗)2
≈ r∗

√
2

[
1 − 3

4
(r∗)2 − 1

32
(r∗)4

]
, ψ∗

0 =
π

2
,

Γ = −Υ ≈ − ln(1 +
√

2) − r∗ −
√

2

4
(r∗)2 − 1

3
(r∗)3 − 5

√
2

32
(r∗)4.

At order µ,

Λ1 = Λ2, Λ3 = −Λ4, Λ5 =
	

r∗ , Λ6 = 0.

Upon evaluating the expressions for the Λi and Ωij given in Appendices C and D,
respectively,

τ−
1 = τ+

1 ≈ −0.24629 r∗ − 0.42045 (r∗)2 + 0.53831 (r∗)3 − 0.26278 (r∗)4,

s∗
1 =

ŝ1

2
≈ 0.69662 + 0.41545 r∗ − 2.66930 (r∗)2 + 2.73171 (r∗)3 − 2.12520 (r∗)4,

ψ∗
1 ≈ 	

r∗ [1.68179 − 1.18921 r∗ + 1.05112 (r∗)2 − 1.04056 (r∗)3 + 1.01170 (r∗)4].

(5.1)

Because ψ∗ = π/2, using (4.21) we obtain

σ1 ≈ −0.98517 + 3.36358 r∗ − 2.15325 (r∗)2 + 0.84090 (r∗)3 − 0.93567 (r∗)4.

All the coefficients in the above expansions are correct up to four decimal places.
Because the error in the above expansions is of the order (r∗)5 ≈ 10−5, the coefficient
of (r∗)i in each expansion, where i is between 0 and 4, need only be correct up to
(4 − i) decimal places.

Equation (5.1) explicitly determines the dependence of the tangent angle at the
interface and the shifting of the phase boundary away from the neck on the
difference in the Gaussian curvature stiffnesses between the domains. This was
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observed previously for budding of a vesicle by Jülicher & Lipowsky (1996). In
experimental images of vesicles with two fluid domains, it is also observed that the
phase boundary is not at the neck (Baumgart et al. 2005). However, in experimental
situations, the shifting of the phase boundary away from the neck is a combined
effect of the different mean curvature bending stiffnesses (ε �= 1), different Gaussian
curvature bending stiffnesses (	 �= 0), and unequal area fractions (χ+ �= 1/2). In this
situation, the expressions given by (4.7) to (4.10), (4.15) to (4.17), and (4.24) to (4.26)
need to be evaluated numerically.

5.2. General case: comparison between analytical and numerical solutions
for experimentally relevant situation

We now compare our boundary layer results with the results obtained from numerical
integration of the shape equations (2.2) to (2.5) along with the jump conditions (2.8)
to (2.10) and the boundary conditions (2.13) and (2.14) for parameter values that
were employed to analyse experimental shapes in Baumgart et al. (2005).

The geometric description of the experimental vesicle that was analysed (figure 2A
of Baumgart et al. (2005)) are: Ld phase area fraction χ+ ≈ 0.56, r∗ ≈ 0.34.
Corresponding to χ+ = 0.56, using (2.15), we obtain S∗ = 1.45, or �∗ = 0.12.
The best-fit result to this experimental shape using numerical integration gave ε = 5,
	 = 3.6, a pressure p̂ = −333.11 (outer excess), and a line tension σ̂ = 73.45. In the
analytical solution, we employ µ = 0.055, which corresponds to p = 333.11 (inner
excess), and obtain σ = 0.21, or equivalently, σ̂ = σp = 71.15 . A comparison between
tangent angles of the numerical solution and the boundary layer solution in the neck
region is shown in figure 2(a). The analytical expressions for the tangent angle, for the
(−) and the (+) regions, are ψ−(s) = ψ−

0 (s) + µ ψ−
1 (s) and ψ+(s) = ψ+

0 (s) + µ ψ+
1 (s),

respectively, where ψ−
0 (s), ψ−

1 (s), ψ+
0 (s), ψ+

1 (s) are given in Appendix E.
Using the mechanical parameters ε = 5 and 	 = 3.6, numerical shapes that

correspond to experimental shapes 2D and 2G of Baumgart et al. (2005) were
obtained. We compare numerical and analytical solutions for the tangent angle in
the neck region for those cases in figures 2(b) and 2(c). In figure 2(b), the input
parameters to the analytical solution are χ+ ≈ 0.18, r∗ ≈ 0.24, and µ = 0.051 (or
p = 387.62). The values of the line tension obtained from boundary layer analysis
and numerical integration, in this case, are σ̂ = 52.75 and σ̂ = 54.27, respectively.
In figure 2(c), the input parameters are χ+ ≈ 0.89, r∗ ≈ 0.52, and µ = 0.022 (or
p = 2125.78). The line tension calculated from boundary layer analysis and numerical
integration are σ̂ = 405.91 and σ̂ = 423.73, respectively. In all of these, we observe
good agreement. We have also compared analytical and numerical solutions for a
variety of other parameter values and obtained good matches. They are not presented
here.

The excellent agreement between numerical and analytical solutions suggest that
the approximate expression for the tangent angle near the interface can be used
to extract the difference in Gaussian curvature stiffnesses 	 and line tension σ

from experimental vesicles data. Use of the analytical expression will eliminate the
need for the repeated generation of numerical solutions in the estimation of the
material parameters (Baumgart et al. 2005). The higher-order boundary layer analysis,
presented here, with the incorporation of the influence of 	, will play a key role in
this determination. Analytical expressions for the tangent angle for the (−) and (+)
regions, obtained via quadratic polynomials in the arclength around the interface, have
been used for the estimation of parameters by Semrau et al. (2007). However, they
considered the derivative of the tangent angle across the interface to be continuous,
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Figure 2. Comparison between the analytical and numerical solutions of the tangent angle in
the neck region for ε = 5 and 	 = 3.6. The other input parameters (χ+, r∗, µ) are: (a) (0.56,
0.34, 0.055), (b) (0.18, 0.24, 0.051), and (c) (0.89, 0.52, 0.022). The tangent angle at the interface,
in all cases, is different from π/2. The geometric quantities used as inputs for solutions in
(a), (b), and (c) correspond to the experimental vesicles shown in figures 2A, 2D, and 2G of
Baumgart et al. (2005), respectively.

which is not always the case and restricts the applicability of their technique. The
expressions for tangent angle that we obtain here, by solving the shape equations,
are not restricted by any such condition and exhibit proper physical behaviour of the
membrane and can determine elastic parameters more accurately using experimental
data. We will address this issue in future work.

5.3. Influence of ε and 	 on the details of a non-symmetric shape

In a non-symmetric situation, at the lowest order, the expressions given by (4.7)
to (4.10) indicate that s∗

0 , ŝ0, τ−
0 , τ+

0 , and σ0 are not influenced by ε or 	, which
means that they are determined by the outer solution alone. The tangent angle ψ∗

0

at the interface is influenced by ε. When χ+ = 1/2 and ε is close to unity, ψ∗
0 is

approximately given by

ψ∗
0 ≈ π

2
−

(
ε − 1

ε + 1

)
1

1 − r∗ ,

the neck forms at a location away from the interface, and the neck radius is smaller
than the boundary radius r∗. At order µ, the values of s∗

1 , ŝ1, τ−
1 , τ+

1 , ψ∗
1 , and σ1 are

influenced by ε, but not significantly. Interestingly, 	 has an influence only on ψ∗
1 .
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6. Conclusions
In this work, we present approximate analytical solutions of the shape equations for

giant unilameller vesicles with fluid phase coexistence using a boundary layer analysis
up to and including terms of first order. Our analytical solution reduces the number
of measurements needed as inputs for the existing lowest-order analysis of Allain
& BenAmar (2006). The boundary layer calculation agrees well with the numerical
solution for a variety of parameter values. Also, using the best-fit parameter values
of Baumgart et al. (2005), we show that the shapes obtained from the boundary
layer analysis match well with the experimental shapes. Our higher-order analysis
incorporates the influence of Gaussian curvature not considered in earlier analytical
work. The expression that we obtain here for the tangent angle in the neck region
can be used to efficiently and accurately estimate elastic parameters, such as the line
tension and Gaussian curvature stiffness, from experimental data.

We thank Anindya Chatterjee for his helpful comments on an earlier draft of the
manuscript. We are also grateful to Tobias Baumgart for sustaining our interest in
the subject and for many helpful discussions.

Appendix A. Lowest-order outer layer for the (−) region
The equations at the lowest order are

h0 = − 1

τ0

, ψ ′
0 =

2

τ0

− sinψ0

r0

, r ′
0 = cos ψ0, � ′

0 = −r0, (A 1)

with the boundary conditions

ψ0(0) = 0, r0(0) = 0, �0(0) = 1.

The solution at this order is given by

ψ0 =
s

τ0

, r0 = τ0 sin
s

τ0

, �0 = τ 2
0

(
cos

s

τ0

− 1

)
+ 1. (A 2)

The outer solution, at this order, is a spherical cap of radius τ0.

Appendix B. Lowest-order inner layer for the (−) region
At the lowest order the equations (from (3.4) and (3.5)) in the inner layer are

Ḧ0 − τ0

ε
H0 + 2H 3

0 = 0, ψ̇0 = −2H0, ṙ0 = 0, �̇0 = 0. (B 1)

At this order, the solution for H0 is given in terms of the Jacobi elliptic cosine
function:

H0 = C cn(Aξ + Γ, k), (B 2)

where A ≡
√

2C2 − τ0/ε and k ≡ C/
√

2C2 − τ0/ε. In the experimental vesicles
(Baumgart et al. 2003, 2005) and in the numerical solutions (Baumgart et al. 2005),
it is observed that h decays monotonically from a maximum value at the phase
boundary to the outer limiting value. This behaviour is obtained only if we take k = 1
in (B 2) to obtain

H0 =

√
τ0

ε
sech ζ, where ζ ≡

√
τ0

ε
ξ + Γ.
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This reduces the number of undetermined constants in the solution from two to one.
Using the above, the solutions for ψ0, r0, and �0 are

ψ0 = ψ∗
0 − 2[arctan(sinh ζ ) − arctan(sinh Γ )], r0 = r∗, �0 = � ∗ = cos S∗,

where, at this order, ψ∗
0 is the tangent angle and S∗ is the value of the undeformed

arclength at the interface measured from the north pole. This solution for the tangent
angle is equivalent to that of Allain & BenAmar (2006).

Appendix C. Expressions for Λ1 to Λ6

Λ1 =

√
ε

τ−
0

[
2 cos

s∗
0

τ−
0

(1 + tanhΓ ) − 2r∗

τ−
0

sechΓ

]
,

Λ2 =

√
1

τ+
0

[
2 cos

ŝ0 − s∗
0

τ+
0

(1 − tanh Υ ) − 2r∗

τ+
0

sechΥ

]
,

Λ3 =
s1∗
τ−
0

−τ−
1

(
s∗
0

(τ−
0 )2

+

√
ε

τ−
0

Γ sechΓ

)
+

√
ε

τ−
0

{[
cos

s∗
0

τ−
0

(
4

r∗ ln(sechΓ )− 3

r∗ Γ − 2

r∗

)
+

4

τ−
0

arctan(sinh Γ )

]
sechΓ +

1

r∗ cos
s∗
0

τ−
0

exp(Γ ) − 6

τ−
0

(1 + tanh Γ )

}
,

Λ4 = − ŝ1 − s1∗
τ+
0

+ τ+
1

(
ŝ0 − s∗

0

(τ+
0 )2

− Υ

τ+
0

sechΥ

)
+

√
1

τ+
0

{[
4

τ+
0

arctan(sinh Υ )

+ cos
ŝ0 − s∗

0

τ+
0

(
− 3

r∗ Υ +
2

r∗ − 4

r∗ ln(sech Υ )

)]
sechΥ

− 1

r∗ cos
ŝ0 − s∗

0

τ+
0

exp(−Υ ) +
6

τ+
0

(1 − tanh Υ )

}
,

Λ5 = 	
sin ψ∗

0

r∗ +(ε sechΓ tanhΓ )

[
2

τ−
0

arctan(sinh Γ )+
2

r∗ cos
s∗
0

τ−
0

ln(sech Γ )

]
− ε

2r∗ cos
s∗
0

τ−
0

eΓ +
ε

τ−
0

(2 sech2Γ −1)+
ε

2

(
3

r∗ cos
s∗
0

τ−
0

+
τ−
1√
ετ−

0

)
sechΓ (1 − Γ tanh Γ )

− (sechΥ tanhΥ )

[
2

τ+
0

arctan(sinh Υ ) − 2

r∗ cos
ŝ0 − s∗

0

τ+
0

ln(sech Υ )

]
+

1

2 r∗ cos
ŝ0 − s∗

0

τ+
0

e−Υ − 1

τ+
0

(2 sech2Υ − 1)

−1

2

(
3

r∗ cos
ŝ0 − s∗

0

τ+
0

+
τ+
1√
τ+
0

)
sechΥ (1 − Υ tanh Υ ),

Λ6 =
τ+
1 − τ−

1

2
+ (

√
ε τ−

0 sech2Γ tanh Γ )

[
2

τ−
0

arctan(sinh Γ ) +
2

r∗ cos
s∗
0

τ−
0

ln(sech Γ )

]
+

√
ε

τ−
0

sechΓ (2 sech2Γ − 1) +

√
ε τ−

0

2

(
3

r∗ cos
s∗
0

τ−
0

+
τ−
1√
ε τ−

0

)
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×sech2Γ (1 − Γ tanh Γ ) −
√

ετ−
0

2r∗ cos
s∗
0

τ−
0

sechΓ eΓ +

√
τ+
0

2 r∗ cos
ŝ0 − s∗

0

τ+
0

sechΥ e−Υ

− 1√
τ+
0

sechΥ (2 sech2Υ − 1) − (

√
τ+
0 sech2Υ tanh Υ )

[
2

τ+
0

arctan(sinh Υ )

− 2

r∗ cos
ŝ0 − s∗

0

τ+
0

ln(sechΥ )

]
−

√
τ+
0

2

(
3

r∗ cos
ŝ0 − s∗

0

τ+
0

+
τ+
1√
τ+
0

)
× sech2Υ (1 − Υ tanhΥ ).

Appendix D. Expressions for Ω11 to Ω42

Ω11 = − 2 ε

Ω
√

τ+
0

(sechΓ tanhΓ sechΥ ), Ω12 =
2

Ω

√
ε

τ−
0

(sechΓ sechΥ tanh Υ ),

Ω13 =
4

Ω

√
ε

τ−
0 τ+

0

(sechΓ sechΥ ), Ω21 =
1

Ω
(sechΥ tanh Υ ), Ω22 =

2

Ω
√

τ+
0

sechΥ,

Ω31 =
ε

Ω
(sechΓ tanh Γ ), Ω32 =

2

Ω

√
ε

τ−
0

sechΓ,

Ω41 =

√
τ−
0

ε
tanh Γ sechΥ, Ω42 = −τ+

0 (sechΥ tanh Υ ),

where

Ω =
2 ε sech2 Γ

τ+
0

[√
τ+
0 tanh Υ −

√
ε τ−

0 tanh Γ

]
.

Appendix E. Composite solution
Composite solutions, that are valid for the entire region, are obtained using the

relation

Composite solution = Inner + Outer − Matching.

The composite solutions at lowest order for the (−) region are

ψ−
0 (s) =

s

τ−
0

− π − 2 arctan(sinh ζ ), r−
0 (s) = τ−

0 sin
s

τ−
0

,

� −
0 (s) = 1 + (τ−

0 )2 cos
s

τ−
0

− (τ−
0 )2,

where ζ =
√

τ−
0 /ε (s − s∗

0 )/µ + Γ with Γ given by (4.3).
For the (+) region, they are

ψ+
0 (s) = 2 π − s∗

0 − s

τ+
0

− 2 arctan(sinh η), r+
0 (s) = τ+

0 sin
ŝ0 − s

τ+
0

,

�+
0 (s) = −1 + (τ+

0 )2 − (τ+
0 )2 cos

ŝ0 − s

τ+
0

,

where η ≡
√

τ+
0 (s − s∗

0 )/µ + Υ with Υ given by (4.3).
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The corresponding composite solutions at order µ for the (−) region are

r−
1 (s) =

√
ε

τ−
0

[2 Nsech ζ − 4M(1 + tanh ζ )] ,

ψ−
1 (s) =

τ−
1

(τ−
0 )2

s +

√
ε

τ−
0

{[
2A − 4M

r∗ −
(

6A1

r∗ +
τ−
1√
τ−
0

)
ζ +

4 N

r∗ arctan(sinh ζ )

+
8M

r∗ ln(sech ζ )

]
sech ζ +

2M

r∗ exp ζ − 6

τ−
0

(1 + tanh ζ )

}
,

� −
1 (s) = 2τ−

0 τ−
1

(
cos

s

τ−
0

− 1

)
+ τ−

1 s sin
s

τ−
0

.

In the above, M = [cos(s∗
0/τ

−
0 )]/2 and N = r∗/τ−

0 .
For the (+) region

r+
1 (s) =

1√
τ+
0

[2 T sech η + 4 P (1 − tanh η)] ,

ψ+
1 (s) =

τ+
1

(τ+
0 )2

(̂s0 − s) − ŝ1

τ+
0

+
1√
τ+
0

{[
2D − 4 P

r∗ +

(
6 P

r∗ − τ+
1√
τ+
0

)
η +

4 T

r∗

× arctan(sinh η) +
8P

r∗ ln(sech η)

]
sech η +

2P

r∗ exp(−η) +
6

τ+
0

(1 − tanh η)

}
,

�+
1 (s) = 2τ+

0 τ+
1

(
1 − cos

ŝ − s

τ+
0

)
+ τ+

1 (̂s0 − s) sin
ŝ0 − s

τ+
0

.

In the above, P = −{cos[(̂s0 − s∗
0 )/τ

+
0 ]}/2 and T = r∗/τ+

0 .
The composite solutions for h− and h+, up to order µ, are given by the

corresponding inner solutions H0/µ + H1 + µ H2 described in the text.
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